Curiosity, learning and homework help
21/11/2024
Sign upLog in
Language: FR | ENG

NEWSLETTER

:

MEMBERS

Come to discuss on the forum!
 FAST and FREE signup. 
😀 Access to discussion forums 😀
Help for HOMEWORKS, support in COMPUTER SCIENCE, help for learning FRENCH and ENGLISH, discussion on your INTERESTS and HOBBIES...

Some useful formulas
Cosine function

Some properties of the cosine function (cos) :

    \(\displaystyle cos(-x)=cos(x)\)

    \(\displaystyle cos(\pi+x)=-cos(x)\)

    \(\displaystyle cos(\pi-x)=-cos(x)\)

    \(\displaystyle cos(\frac{\pi}{2}+x)=-sin(x)\)

    \(\displaystyle cos(\frac{\pi}{2}-x)=sin(x)\)

    \(\displaystyle cos(x+y)=cos(x)*cos(y)−sin(x)*sin(y)\)

    \(\displaystyle cos(x-y)=cos(x)*cos(y)+sin(x)*sin(y)\)

    \(\displaystyle \begin{aligned}cos(2x)&=cos^2(x)-sin^2(x) \\
    &=1-2*sin^2(x) \\
    &=2*cos^2(x)-1\end{aligned}\)

    \(\displaystyle \begin{aligned}cos(3x)&=cos(x)*\left(1-4*sin^2(x)\right) \\
    &=cos(x)*\left(4*cos^2(x)-3\right)\end{aligned}\)

    \(\displaystyle cos^2(\frac{x}{2})=\frac{1+cos(x)}{2}\)

    \(\displaystyle cos(x)+cos(y)=2*cos\left(\frac{x+y}{2}\right)*cos\left(\frac{x-y}{2}\right)\)

    \(\displaystyle cos(x)-cos(y)=-2*sin\left(\frac{x+y}{2}\right)*sin\left(\frac{x-y}{2}\right)\)

    \(\displaystyle cos(x)*cos(y)=\frac{1}{2}\left(cos(x+y)+cos(x-y)\right)\)

    \(\displaystyle cos(x)*sin(y)=\frac{1}{2}\left(sin(x+y)-sin(x-y)\right)\)


Sine function

Some properties of the sine function (sin) :

    \(\displaystyle sin(-x)=-sin(x)\)

    \(\displaystyle sin(\pi+x)=-sin(x)\)

    \(\displaystyle sin(\pi-x)=sin(x)\)

    \(\displaystyle sin(\frac{\pi}{2}+x)=cos(x)\)

    \(\displaystyle sin(\frac{\pi}{2}-x)=cos(x)\)

    \(\displaystyle sin(x+y)=sin(x)*cos(y)+cos(x)*sin(y)\)

    \(\displaystyle sin(x-y)=sin(x)*cos(y)-cos(x)*sin(y)\)

    \(\displaystyle sin(2x)=2*sin(x)*cos(x)\)

    \(\displaystyle \begin{aligned}sin(3x)&=sin(x)\left(4*cos^2(x)-1\right) \\
    &=sin(x)*\left(3-4*sin^2(x)\right)\end{aligned}\)

    \(\displaystyle sin^2(\frac{x}{2})=\frac{1-cos(x)}{2}\)

    \(\displaystyle sin(x)+sin(y)=2*sin\left(\frac{x+y}{2}\right)*cos\left(\frac{x-y}{2}\right)\)

    \(\displaystyle sin(x)-sin(y)=2*cos\left(\frac{x+y}{2}\right)*sin\left(\frac{x-y}{2}\right)\)

    \(\displaystyle sin(x)*sin(y)=\frac{1}{2}\left(-cos(x+y)+cos(x-y)\right)\)

    \(\displaystyle sin(x)*cos(y)=\frac{1}{2}\left(sin(x+y)+sin(x-y)\right)\)


Tangent function

Some properties of the tangent function (tan) :

    \(\displaystyle tan(-x)=-tan(x)\)

    \(\displaystyle tan(\pi+x)=tan(x)\)

    \(\displaystyle tan(\pi-x)=-tan(x)\)

    \(\displaystyle tan(\frac{\pi}{2}+x)=-cotan(x)\)

    \(\displaystyle tan(\frac{\pi}{2}-x)=cotan(x)\)

    \(\displaystyle tan(x+y)=\frac{tan(x)+tan(y)}{1-tan(x)*tan(y)}\)

    \(\displaystyle tan(x-y)=\frac{tan(x)-tan(y)}{1+tan(x)*tan(y)}\)

    \(\displaystyle tan(2x)=\frac{2*tan(x)}{1-tan^2(x)}\)

    \(\displaystyle tan(3x)=\frac{tan(x)\left(3-tan^2(x)\right)}{1-3*tan^2(x)}\)

    \(\displaystyle tan^2(\frac{x}{2})=\frac{1-cos(x)}{1+cos(x)}\)

    \(\displaystyle \begin{aligned}tan(\frac{x}{2})&=\frac{1-cos(x)}{sin(x)} \\
    &=\frac{sin(x)}{1+cos(x)}\end{aligned}\)

    \(\displaystyle tan(x)+tan(y)=\frac{sin(x+y)}{cos(x)*cos(y)}\)

    \(\displaystyle tan(x)-tan(y)=\frac{sin(x-y)}{cos(x)*cos(y)}\)


If you have any comments or questions about the trigonometry formulas, you can discuss them in the forum: Discussion forums.

CHALLENGE : If you want to practice demonstrating any of these formulas, you can propose a proof in the forum: Discussion forums.
Share this page on social media:
Quick comments
There is no comment yet.

Use of cookies on this website:
- If you are not a member of this website, no cookie is intentionally stored on your computer.
- If you are a member of this website, cookies are only used to keep your connection after each visit. This option can be deactivated at will in your profile and is deactivated by default.
- No other information is stored or retrieved without your knowledge, neither your personal information nor any other whatsoever. If in doubt, do not hesitate to contact the administrator of this website .
- Even this information banner does not use cookies and will therefore be displayed constantly on each visit on all pages of the website.